Temperature profiles of e-cigarettes and e-cigars during heating and thermal analyses of e-liquids

John H. Lauterbach, Ph.D., DABT

Sebastian J. Lauterbach

Lauterbach & Associates, LLC, Macon, GA 31210-4708 USA

Background – 1

- E-cigarettes of not long ago appeared to have two problems
 - Cartomizers of the time would often clog with charred e-liquid
 - E-cigarette aerosols would sometimes be hot and device surfaces would also be hot
 - Even today, some e-liquids will give aerosols with a "burnt" taste

Background – 2

- Good product stewardship requires knowledge of temperatures inside e-cigarettes
 - Are temperatures hot enough for pyrolysis of eliquids?
 - Are temperatures hot enough for pyrolysis of materials used to fabricate e-cigarettes?
- Combination of temperature measurement and thermal analysis techniques could be useful

Objectives for research

- Determine interior temperatures for ecigarettes, cartomizers, and e-cigars during puffing
- Determine if thermal analysis techniques can be used to differentiate thermally stable versus thermally unstable e-liquids

Temperature measurement

- Temperatures should be measured during human use or under machine puffing
- Apparatus for temperature measurement should have minimal effect on device performance
- Placement of temperature sensor should be close in area of highest temperature

Experimental systems – temperature

- Used Type-K micro-thermocouples (Amazon)
 - Digital readout on handheld device (Amazon)
 - Digital data acquisition using hardware and software from DAQami (mccdaq.com)
- Attempts to place thermocouples through device or cartomizer walls unsuccessful
- Thermocouple threaded through mouth-end of device or cartomizer to near heating point

Experimental systems – puffing

- Human
 - Thermocouple leads affixed to side of device
 - Lips made seal around leads and device
 - Puff profiles
 - Natural versus frequent forced puffing
 - Frequent forced puffing gave higher temperatures
- Homemade smoking engine
 - Puff profiles 3/30 e-cig, 3/10 for large e-cig
 - Flow set to activate devices

Homemade smoking engine

- Constant-vacuum design using two-stage rotary pump as vacuum source
 - "Square-wave" puff provided by Parker-Hannifin
 12-volt solenoid valve
 - Solenoid valve controlled by SainSmart 4-channel relay board using SainSmart control software
 - Flow control at device set by needle valve attached to piece of clear PVC tubing

Human puffing – Example 1

Human puffing – Example 2

Little e-cigar

Thermal analysis – E-liquid vs. mix

Conclusions – 1

- Using convenience samples of e-cigars and ecigarettes, we were able to obtain profiles of internal temperature versus puffing
- A puffing regimen of a 3-second puff every 30 seconds for cig-a-like e-cigs and a small e-cigar did not give excessive temperature rises
- A puffing regimen of a 3-second puff every 10 seconds showed greater rise with an e-cigar

Conclusions – 2

 Use of thermal analysis techniques such as thermogravimetric analysis (TGA) and differential thermal analysis (DTA) shows promise for characterizing e-liquids and components of e-cigarettes, but more research is needed to develop the instrumental parameters for such techniques